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Abstract

Stoichiometric Network Theory is a constraints-based, optimization
approach for quantitative analysis of the phenotypes of large-scale bio-
chemical networks that avoids the use of detailed kinetics. This approach
uses the reaction stoichiometric matrix in conjunction with constraints
provided by flux balance and energy balance to guarantee mass con-
served and thermodynamically allowable predictions, respectively. How-
ever, to date, the flux and energy balance constraints have not been imple-
mented simultaneously because optimization under the combined con-
straints is nonlinear. We introduce a sequential quadratic programming
algorithm that solves the nonlinear optimization problem. The system
of fermentation in Saccharomyces cerevisiae is used to illustrate the new
method. The algorithm allows the use of nonlinear objective functions.
As a result, we suggest a novel optimization with respect to the heat
dissipation rate of a system. We also emphasize the importance of incor-
porating interactions between a model network and its surroundings.
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Introduction

Genome-wide sequencing efforts and subsequent bioinformatic analy-
sis have provided a collection of reconstructed biochemical networks for
a number of living organisms (Edwards and Palsson 2000). As this col-
lection continues to grow, methods for analyzing the cellular functions of
the networks become increasingly important. Many mathematical meth-
ods have been developed to provide a discription of these networks; how-
ever, most of these methods rely on rate equations that require detailed,
kinetic-rate information. Unfortunately, rate constants are not generally
known; nor can they be determined with current experimental techniques
in vivo or from the genome sequences (Edwards and Palsson 2000).

To address the lack of kinetic-rate information, genome-scale,
constraints-based models have been developed to describe the functional
states, or phenotypes, of many organisms (Westerhoff and Palsson 2004).
These optimization approaches are used to analyze biochemical reac-
tion systems in nonequilibrium steady-state (NESS) via constraints, pro-
vided by Stoichiometric Network Theory (SNT), that are based on the
stoichiometry of the system, i.e., the static, algebraic, topological struc-
ture of the biological network that provides the framework within which
chemical “motion” must take place (Érdi and Tóth 1989). Using Flux
Balance Analysis (FBA) (Edwards and Palsson 2000) and Energy Bal-
ance Analysis (EBA) (Beard et al. 2002; Qian et al. 2003), feasible solu-
tions of the optimization problem are required to satisfy mass and energy
conservation, as well as the second law of thermodynamics.

FBA has been used to analyze biochemical networks of many organ-
isms including mutant strains of E. coli (Edwards and Palsson 2000),
Heamophilus influenza (Edwards and Palsson 1999), and mitochondrial
energy metabolism (Ramakrishna et al. 2001). However, it has since
been shown that FBA alone does not guarantee thermodynamically fea-
sible solutions, i.e., reaction fluxes could satisfy mass balance but flow
against energy gradients. For this reason, EBA was developed to make
the results of the SNT constraints-based approaches more physically re-
alistic while revealing further insight into the mechanisms of these com-
plex biochemical networks (Beard et al. 2002; Qian et al. 2003).

Although algorithms for solving optimization problems subject to FBA
or EBA constraints separately are available, an algorithm that explicitly
incorporates both types of constraints simultaneously, thus treating the
flux and energy on equal footing, does not exist. This is due to the fact
that the combination of these constraints creates a nonlinear, constrained
optimization problem, which is more difficult to solve. Furthermore,
previous studies have only considered linear objective functions when
modeling biochemical networks. For example, when studying E. coli
metabolism, the maximization of the biomass needed to reproduce has
been used (Edwards and Palsson 2000; Beard et al. 2002). Arguments
based on experimental evidence can be made regarding what objective
function is believed to be appropriate for each particular system. How-
ever, greater insight can be obtained if in silico experiments can be done
to test different, possibly nonlinear, objective functions for each system.
We present an algorithm that incorporates FBA and EBA constraints si-
multaneously and allows the testing of nonlinear objective functions.
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Stoichiometric Network Theory

To derive the constraints used in the optimization methods, we begin

by considering a biochemical reaction network with M reactions and N

chemical species denoted by Xi, i = 1,2, . . . ,N, where the jth reaction

can be represented by the generic reaction

ν j
1X1 +ν j

2X2 + · · ·+ν j
NXN

k j
+




k j
−

κ j
1X1 +κ j

2X2 + · · ·+κ j
NXN. (1)

If this system is being driven by external flux interactions with its sur-

roundings, the kinetics equations used to model the dynamics of such a

reaction network are given in the compact form

dx
dt

= SJ+Jext , (2)

where x represents the N-dimensional vector of species concentrations,
J represents the M-dimensional vector of reaction fluxes, Jext is the N-

dimensional vector of external fluxes, and S ∈ R
N×M is known as the

stoichiometric matrix with ith row and jth column entry given by {S}i, j =

κ j
i −ν j

i .

The stoichiometric matrix is known once a biochemical network has
been reconstructed from the genomic sequencing and the bioinformatic
analysis has been done. Unfortunately, this is not the case for the reac-
tion rate constants, k j

+ and k j
−. Rather, the rate constants are not gen-

erally known, nor can they be readily measured in vivo. Therefore, we
must turn to methods of analysis that do not require knowledge of these
constants. By writing the kinetics equations as in (2), the unknowns are
absorbed into the flux vector J, making it a vector of unknowns. In a way,
this is convenient because we do not have to be concerned about the form
of the kinetics equations, i.e., whether we should use mass action kinet-
ics or Michaelis–Menten kinetics equations, since all that information
has also been absorbed into the vector J.

A biochemical network that is interacting with its surroundings by con-
stantly being driven by external fluxes flowing into and out of it will go
to a NESS (Hill 1974; Qian and Beard 2005). Therefore, a lot of insight
about the system’s properties can be gained by studying it in NESS. This
is the basis of SNT where the stoichiometric structure of the biochemical
network is used to describe a system’s phenotypic functions.
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Flux Balance Analysis

When a system is in NESS, the concentrations of the chemical species

are not changing but there is a nonzero flux distribution flowing through

the network. From (2), we see that the NESS flux distribution must sat-

isfy

SJ = −Jext , (3)

which is known as the flux balance constraint of FBA (Edwards and Pals-
son 2000). This constraint is similar to Kirchoff’s current law of elec-
trical circuit theory and says that the NESS flux distribution through the
biochemical network must conserve mass.

Additional upper and lower bounds can be applied to the NESS fluxes.
In most cases, the bounds for the internal fluxes are infinite, but finite
bounds may be imposed if there is experimental evidence that suggests
such constraints are physically relevant. Bounds may also be applied to
test how the flux distribution through the network adjusts if the enzyme
that drives a particular reaction is absent or limited due to a genetic mu-
tation or disease. Imposing bounds on the external fluxes is useful for
defining the medium that the living system is subject to as well as the
biomass and waste being removed from the system.

The FBA constraints require the NESS fluxes to conserve mass, but
this does not guarantee that the fluxes are thermodynamically feasible.
According to the laws of thermodynamics, the flux of any given reac-
tion must flow down the reaction’s potential gradient (Qian and Beard
2005). A flux flowing against an energy gradient would constitute a per-
petual motion machine, able to create energy from nothing, which is not
possible. Therefore, the laws of thermodynamics must be incorporated
to be certain that the feasible fluxes are restricted to thermodynamically
feasible fluxes.
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Energy Balance Analysis

EBA is the theory and methodology for enforcing the laws of thermo-

dynamics in the SNT approaches (Beard et al. 2002; Qian et al. 2003).

Just as the constraints of FBA result from the structure of the stoichio-

metric matrix S, so do the constraints of EBA. If µµµ is defined as the

N-dimensional vector of chemical potentials, the M-dimensional vector

of reaction potentials, ∆µµµ, is given by ST µµµ = ∆µµµ. Assuming S has r lin-

early independent rows, r ≤ N, the nullspace matrix K ∈ R
M×(M−r) can

be constructed with columns that form a basis for the nullspace of S, so

that SK = 0. The nullspace matrix describes the internal loops of the

biochemical network and can be used to give a constraint requiring the

conservation of energy, i.e., the first law of thermodynamics, as

KT ST µµµ = KT ∆µµµ = 0. (4)

This constraint requires that the sum of reaction potentials around any
cycle of reactions equals 0, which is similar to Kirchoff’s voltage or loop
law of electrical circuit theory, and is known as the energy balance con-
straint of EBA (Beard et al. 2002; Qian et al. 2003).

By defining the nonnegative forward and reverse reaction fluxes, J+ and

J− respectively, with jth entries representing the one-way fluxes through

the jth reaction, the net flux distribution through the reactions of the net-

work is given by J = J+ − J−. Similarly, the jth reaction potential is

given by (Qian and Beard 2005)

∆µ j = RT ln

(

J j
−

J j
+

)

, (5)

where R is the gas constant and T is the temperature. This relationship
leads directly to the second law of thermodynamics, i.e.,

−J j∆µ j = −RT
(

J j
+− J j

−

)

ln

(

J j
−

J j
+

)

≥ 0, (6)

which says that the system must dissipate heat and entropy must increase

as a result of the work being done on the system through the external

fluxes. The inequality in (6) is an equality if and only if J j = ∆µ j = 0,

in which case the reaction would be in equilibrium. The total heat dis-

sipation rate of the living system is given by hdr = −JT ∆µµµ > 0. It is

mathematically possible to have hdr → 0 in the limit as J−/J+ → 1

component-wise while maintaining J = J+ − J−. However, to prevent

this physically unrealistic possibility, we propose the additional con-

straint

(hdr)lb ≤ hdr ≤ (hdr)ub. (7)
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The Optimization Problem

We would like to describe the phenotypes of a living organism in NESS

by simultaneously imposing the FBA and EBA constraints and mini-

mizing a given smooth, linear or nonlinear, objective function. That is,

we want to solve the nonlinear, constrained-optimization problem repre-

sented by

min
J,J+,J−,Jext ,∆µµµ

f (J,J+,J−,Jext ,∆µµµ)

s.t. SJ+Jext = 0

KT ∆µµµ = 0

diag
(

e∆µµµ/RT
)

J+−J− = 0

J−J+ +J− = 0

Jlb ≤ J ≤ Jub (8)

0 ≤ J+ < ∞∞∞

0 ≤ J− < ∞∞∞

Jext
lb ≤ Jext ≤ Jext

ub

∆µµµlb ≤ ∆µµµ ≤ ∆µµµub,

(hdr)lb ≤ hdr ≤ (hdr)ub

where the boundary constraints are meant to be satisfied component-
wise. The objective function is assumed to have a biological meaning. It
should be considered as a formal, quantitative hypothesis about the net-
work of interest. The optimization generates predictions, which have to
be tested, for the hypothesis.

Let n be the total number of constraints in the problem. Then, if x =

(JT ,(Jext)T ,JT
+,JT

−,∆µµµT )T , the Lagrangian of the nonlinear optimization

problem (8) is

L(x,λλλ) = f (x)−
n

∑
i=1

λici(x), (9)

where λλλ is the n-dimensional vector of Lagrange multipliers, which are
required to satisfy strict complimentarity conditions, and ci(x) is the
ith constraint evaluated at x. If x∗ is a local solution of (8) and the
set {∇ci(x∗)|ci(x∗) = 0} is linearly independent, the first-order, neces-
sary, optimality conditions require that there exists a vector λλλ∗ such that
∇xL(x∗,λλλ∗) = 0.

An optimization problem in the form of (8) is well suited to be solved
using a Sequential Quadratic Programming (SQP) algorithm (Nocedal
and Wright 1999). The basic idea of an SQP method is to iteratively step
toward an optimal solution, i.e., a root of ∇xL(x,λλλ), by approximating
the original nonlinear problem at each step by a quadratic subproblem.
A simple interpretation of an SQP algorithm is to view it as an applica-
tion of Newton’s method to the KKT optimality conditions (Nocedal and
Wright 1999). It is straightforward to establish local convergence of the
SQP algorithm, yielding optimal solutions that are both mass balanced
and thermodynamically feasible. To obtain the results presented here, the
SQP algorithm was implemented using the MATLAB (Mathworks, Nat-
ick, Massachusetts, United States) computing environment and its built
in functions, including its quadratic programming algorithm quadprog.
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Saccharomyces cerevisiae Glycolysis

We now focus on the well studied system of glycolysis in yeast, in

particular Saccharomyces cerevisiae. Yeast have the ability to metabo-

lize natural sugars and remain dispersed in a medium until the substrate

has been metabolized, at which point the cells flocculate and settle out,

leaving a clear liquid above the yeast (McKinney 2004). This process

produces alcohol and is the reason yeast is so valuable in the fermenta-

tion industry. Overall, the net reaction of fermentation is the conversion

of glucose to ethanol and carbon dioxide

C6H1206 −→ 2C2H5OH+2CO2. (10)
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Figure 1. Illustration of yeast glycolysis.

Table 1. Flux boundaries (µmol ·min−1 ·mg protein−1)

for yeast glycolysis (Teusink et al. 2000).

rxn: transport HK PGI PFK ALD TPI GAPDH

Jlb – – – – – – -24.3

Jub 0.36 0.84 1.26 0.68 1.19 8.4 4.4

rxn PGK PGM ENO PYK PDC ADH

Jlb -4.8 – – – – -3.0

Jub – 9.4 1.35 4.05 0.65 –

Under anaerobic conditions, most of the energy from the sugar is
transferred to ethanol production while growth of the yeast cells is min-
imized (McKinney 2004). An FBA constrained optimization of the un-
branched network, i.e., excluding the reactions in dotted boxes in Figure
1, to maximize ethanol output subject to the flux bounds listed in Ta-
ble 1 yields the optimal flux distribution shown in Table 2. These fluxes
are consistent with results from Teusink et al. (2000), who developed a
Michaelis-Menten kinetics model of yeast glycolysis. It shows that the
unbranched network is limited by the maximum flux of PDC. This fail-
ure of the “lower” part of glycolysis to keep up with the flux through the
“upper” part is typical of the phenotype observed in Tps1 mutants, a gene
associated with trehalose-6-phosphate synthase, the enzyme responsible
for trehalose synthesis (Bonini et al. 2000; Teusink et al. 2000).

A very different story can be told, however, if the branches of the
network are taken into account. Using the constant output fluxes experi-
mentally determined by Teusink et al. (2000) for the 4 boxed branches in
Figure 1, an FBA constrained optimization of the branched system illus-
trates that the PDC limitation is relieved by the additional external fluxes.
The resulting optimal flux distribution is shown in Table 2. This shift in
fluxes through the network due to the incorporation of additional struc-
tural information about the system emphasizes the importance of under-
standing how simplified subset networks being modeled interact with
other cellular functions. Incorporating such information makes a model
more physically relevant and can improve accuracy of results. Further-
more, these links will play a crucial role when models are combined in
an effort to create a unified model of a living organism.

Another important factor to consider is the heat produced by fermenta-

tion. If not removed, it can be lethal or may cause the yeasts to pasteurize

themselves, halting fermentation (Amerine and Singleton 1977). Under

anaerobic conditions with a complex medium and glucose as the sub-

strate, a continuous culture of S. cerevisiae has a specific rate of heat

production (or hdr) of 0.2 W ·g−1 (Cortassa et al. 2002). Table 2 lists the

optimal solutions found for the unbranched and branched yeast glycoly-

sis systems by using the SQP algorithm to minimize

f (JADH ,∆µµµ) = −JADH +
∆µµµT ∆µµµ

2
(11)

subject to the FBA, EBA, and heat dissipation constraints. Again, we
see that the unbranched system is limited by the maximum PDC reac-
tion rate. However, inclusion of the branches to other subnetworks of
yeast metabolism provides relief from this limitation. As a result, the
maximum amount of glucose uptake into the cell is allowed and a re-
alistic estimate of the maximum rate of ethanol production is obtained.
This rate of ethanol production, 0.51 µmol ·min−1 ·mg protein−1, is con-
sistent with the experimentally measured rate from Teusink et al. (2000).
For both the unbranched and branched systems, the optimal solution cor-
responds to a hdr = 0.2 W · g−1, increasing confidence that the optimal
solutions obtained are physically relevant to the extent that the homeo-
static and thermodynamic information is accurate.

Table 2. Optimal solutions for yeast glycolysis.

[J] = (µmol ·min−1 ·mg protein−1), [∆µµµ] = (J ·mol−1), and T = 30◦C.

Unbranched System Branched System

FBA FBA and EBA FBA FBA and EBA

rxn J J J+ J− ∆µµµ J J J+ J− ∆µµµ

transport 0.33 0.33 1.02 0.69 -971 0.36 0.36 0.75 0.39 -1659

HK 0.33 0.33 1.02 0.69 -971 0.36 0.36 0.75 0.39 -1658

PGI 0.33 0.33 1.02 0.69 -971 0.30 0.30 0.70 0.40 -1420

PFK 0.33 0.33 1.02 0.69 -971 0.30 0.30 0.70 0.40 -1422

ALD 0.33 0.33 1.02 0.69 -971 0.30 0.30 0.70 0.40 -1420

TPI 0.33 0.33 1.02 0.69 -971 0.23 0.23 0.64 0.41 -1126

GAPDH 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2379

PGK 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2379

PGM 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2380

ENO 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2378

PYK 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2377

PDC 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2377

ADH 0.65 0.65 1.21 0.56 -1943 0.51 0.51 0.85 0.35 -2270

ATPase 0.65 0.65 1.21 0.56 -1943 0.32 0.31 0.72 0.41 -1422

Glycogen – – – – – 0.02 0.02 0.25 0.23 -234

Trehalose – – – – – 0.02 0.02 0.23 0.21 -203

Glycerol – – – – – 0.07 0.07 0.41 0.34 -476

Succinate – – – – – 0.01 0.01 0.22 0.20 -166
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Conclusions

Biochemical reaction networks are effectively being reconstructed by
genomic sequencing and bioinformatic analysis. This is done with the
hope that it will be useful in describing the cellular functions and phe-
notypes of living organisms on the genome-scale. The SNT constraints-
based optimization approaches take advantage of this information to an-
alyze the systems in NESS without requiring detailed kinetics informa-
tion. As a result, this approach has been shown to be an accurate, useful
tool for studying mutant and disease affected organisms.

When FBA and EBA are combined, they yield results that are both mass
balanced and thermodynamically feasible. The addition of the heat dis-
sipation constraint adds confidence and physical relevance to the results.
More constraints, such as concentration constraints, and experimentally
determined information can be incorporated to further restrict the fea-
sible space over which the optimization is done, and yield more insight
into the biological processes. There are several other directions for future
work to follow, from improvements in the speed of the algorithm to the
incorporation of noise effects using stochastic optimization techniques.

The SQP algorithm presented here is a general method for solving non-
linear programming problems. It is a tool that researchers from various
different backgrounds can use to quickly perform in silico experiments
on interesting biological scenarios instead of having to perform several
expensive laboratory experiments. Surely, this methodology will con-
tinue to play an important role in the future of systems biology.
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